
1

Create with Code
Unit 3 Lesson Plans

© Unity 2021 Create with Code - Unit 3

2

3.1 Jump Force

Steps:
Step 1: Open prototype and change background

Step 2: Choose and set up a player character

Step 3: Make player jump at start

Step 4: Make player jump if spacebar pressed

Step 5: Tweak the jump force and gravity

Step 6: Prevent player from double-jumping

Step 7: Make an obstacle and move it left

Step 8: Create a spawn manager

Step 9: Spawn obstacles at intervals

Example of project by end of lesson

Length: 90 minutes

Overview: The goal of this lesson is to set up the basic gameplay for this prototype. We
will start by creating a new project and importing the starter files. Next we
will choose a beautiful background and a character for the player to control,
and allow that character to jump with a tap of the spacebar. We will also
choose an obstacle for the player, and create a spawn manager that throws
them in the player’s path at timed intervals.

Project
Outcome:

The character, background, and obstacle of your choice will be set up. The
player will be able to press spacebar and make the character jump, as
obstacles spawn at the edge of the screen and block the player’s path.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use GetComponent to manipulate the components of GameObjects
- Influence physics of game objects with ForceMode.Impulse
- Tweak the gravity of your project with Physics.gravity
- Utilize new operators and variables like &&
- Use Bool variables to control the number of times something can be done
- Constrain the RigidBody component to halt movement on certain axes

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/182qzsa79efqMzMF58Arb_c_vR2RllCJFTqKRzSRGV6w/edit#heading=h.vq08cbljak3x
https://docs.google.com/document/d/182qzsa79efqMzMF58Arb_c_vR2RllCJFTqKRzSRGV6w/edit#heading=h.lz8q3nafoy4b

3

Step 1: Open prototype and change background
The first thing we need to do is set up a new project, import the starter files, and choose a
background for the game.
1. Open Unity Hub and create an empty “Prototype 3”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 3 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 3 scene and delete the Sample
Scene without saving

4. Select the Background object in the hierarchy, then
in the Sprite Renderer component > Sprite, select
the _City, _Nature, or _Town image

- New Concept: Sprites / Sprite
Renderer

- Tip: Browse all of the Player and
Background options before choosing
either - some work better with others

Step 2: Choose and set up a player character
Now that we’ve started the project and chosen a background, we need to set up a character for
the player to control.
1. From Course Library > Characters, Drag a character

into the hierarchy, rename it “Player”, then rotate it
on the Y axis to face to the right

2. Add a Rigid Body component
3. Add a box collider, then edit the collider bounds
4. Create a new “Scripts” folder in Assets, create a

“PlayerController” script inside, and attach it to the
player

- Don’t worry: We will get the player and
the background moving soon

- Warning: Keep isTrigger UNCHECKED!
- Tip: Use isometric view and the

gizmos to cycle around and edit the
collider with a clear perspective

© Unity 2021 Create with Code - Unit 3

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/12fe5762-ea5d-48ce-aff7-71c3dd0ec6a0/Prototype%203%20-%20Starter%20Files.zip?_ga=2.193866605.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

Step 3: Make player jump at start
Until now, we’ve only called methods on the entirety of a gameobject or the transform
component. If we want more control over the force and gravity of the player, we need to call
methods on the player’s Rigidbody component, specifically.

1. In PlayerController.cs, declare a new private
Rigidbody playerRb; variable

2. In Start(), initialize playerRb =
GetComponent<Rigidbody>();

3. In Start(), use the AddForce method to make the
player jump at the start of the game

- New Function: GetComponent
- Tip: The playerRb variable could apply

to anything, which is why we need to
specify using GetComponent

private Rigidbody playerRb;

void Start()
{

playerRb = GetComponent<Rigidbody>();
playerRb.AddForce(Vector3.up * 1000);

}

Step 4: Make player jump if spacebar pressed
We don’t want the player jumping at start - they should only jump when we tell it to by pressing
spacebar.

1. In Update() add an if-then statement checking if
the spacebar is pressed

2. Cut and paste the AddForce code from Start() into
the if-statement

3. Add the ForceMode.Impulse parameter to the
AddForce call, then reduce force multiplier value

- Warning: Don’t worry about the slow
jump double jump, or lack of
animation, we will fix that later

- Tip: Look at Unity documentation for
method overloads here

- New Function: ForceMode.Impulse
and optional parameters

void Start()
{

playerRb = GetComponent<Rigidbody>();
playerRb.AddForce(Vector3.up * 100);

}

© Unity 2021 Create with Code - Unit 3

5
void Update() {

if (Input.GetKeyDown(KeyCode.Space)) {
playerRb.AddForce(Vector3.up * 100, ForceMode.Impulse); } }

© Unity 2021 Create with Code - Unit 3

6

Step 5: Tweak the jump force and gravity
We need to give the player a perfect jump by tweaking the force of the jump, the gravity of the
scene, and the mass of the character.

1. Replace the hardcoded value with a new public float
jumpForce variable

2. Add a new public float gravityModifier variable and in
Start(), add Physics.gravity *= gravityModifier;

3. In the inspector, tweak the gravityModifer, jumpForce,
and Rigidbody mass values to make it fun

- New Function: the students about
something

- Warning: Don’t make
gravityModifier too high - the player
could get stuck in the ground

- New Concept: Times-equals
operator *=

private Rigidbody playerRb;
public float jumpForce;
public float gravityModifier;

void Start() {
playerRb = GetComponent<Rigidbody>();
Physics.gravity *= gravityModifier; }

void Update() {
if (Input.GetKeyDown(KeyCode.Space)) {

playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse); } }

Step 6: Prevent player from double-jumping
The player can spam the spacebar and send the character hurtling into the sky. In order to stop
this, we need an if-statement that makes sure the player is grounded before they jump.

1. Add a new public bool isOnGround variable and
set it equal to true

2. In the if-statement making the player jump, set
isOnGround = false, then test

3. Add a condition && isOnGround to the
if-statement

4. Add a new void onCollisionEnter method, set
isOnGround = true in that method, then test

- New Concept: Booleans
- New Concept: “And” operator (&&)
- New Function: OnCollisionEnter
- Tip: When assigning values, use one =

equal sign. When comparing values,
use == two equal signs

public bool isOnGround = true

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {

playerRb.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);
isOnGround = false; } }

private void OnCollisionEnter(Collision collision) {
isOnGround = true; }

© Unity 2021 Create with Code - Unit 3

7

Step 7: Make an obstacle and move it left
We’ve got the player jumping in the air, but now they need something to jump over. We’re going
to use some familiar code to instantiate obstacles and throw them in the player’s path.

1. From Course Library > Obstacles, add an obstacle,
rename it “Obstacle”, and position it where it
should spawn

2. Apply a Rigid Body and Box Collider component,
then edit the collider bounds to fit the obstacle

3. Create a new “Prefabs” folder and drag it in to
create a new Original Prefab

4. Create a new “MoveLeft” script, apply it to the
obstacle, and open it

5. In MoveLeft.cs, write the code to Translate it to
the left according to the speed variable

6. Apply the MoveLeft script to the Background

- Warning: Be careful choosing your
obstacle in regards to the background.
Some obstacles may blend in, making
it difficult for the player to see what
they’re jumping over.

- Tip: Notice that when you drag it into
hierarchy, it gets placed at the spawn
location

private float speed = 30;

void Update() {
transform.Translate(Vector3.left * Time.deltaTime * speed);

}

Step 8: Create a spawn manager
Similar to the last project, we need to create an empty object Spawn Manager that will
instantiate obstacle prefabs.

1. Create a new “Spawn Manager” empty object, then
apply a new SpawnManager.cs script to it

2. In SpawnManager.cs, declare a new public
GameObject obstaclePrefab;, then assign your
prefab to the new variable in the inspector

3. Declare a new private Vector3 spawnPos at your
spawn location

4. In Start(), Instantiate a new obstacle prefab, then
delete your prefab from the scene and test

- Don’t worry: We’re just instantiating on
Start for now, we will have them
repeating later

- Tip: You’ve done this before! Feel free
to reference code from the last project

public GameObject obstaclePrefab;
private Vector3 spawnPos = new Vector3(25, 0, 0);

void Start() {
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

© Unity 2021 Create with Code - Unit 3

8

Step 9: Spawn obstacles at intervals
Our spawn manager instantiates prefabs on start, but we must write a new function and utilize
InvokeRepeating if it to spawn obstacles on a timer. Lastly, we must modify the character’s
RigidBody so it can’t be knocked over.

1. Create a new void SpawnObstacle method, then
move the Instantiate call inside it

2. Create new float variables for startDelay and
repeatRate

3. Have your obstacles spawn on intervals using the
InvokeRepeating() method

4. In the Player RigidBody component, expand
Constraints, then Freeze all but the Y position

- New Concept: RigidBody constraints

private float startDelay = 2;
private float repeatRate = 2;

void Start() {
InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

void SpawnObstacle () {
Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation); }

Lesson Recap
New
Functionality

● Player jumps on spacebar press
● Player cannot double-jump
● Obstacles and Background move left
● Obstacles spawn on intervals

New Concepts
and Skills

● GetComponent
● ForceMode.Impulse
● Physics.Gravity
● Rigidbody constraints
● Rigidbody variables
● Booleans
● Multiply/Assign (“*) Operator
● And (&&) Operator
● OnCollisionEnter()

Next Lesson ● We’re going to fix that weird effect we created by moving the background
left by having it actually constantly scroll using code!

© Unity 2021 Create with Code - Unit 3

9

3.2 Make the World Whiz By

Steps:
Step 1: Create a script to repeat background

Step 2: Reset position of background

Step 3: Fix background repeat with collider

Step 4: Add a new game over trigger

Step 5: Stop MoveLeft on gameOver

Step 6: Stop obstacle spawning on gameOver

Step 7: Destroy obstacles that exit bounds

Example of project by end of lesson

Length: 70 minutes

Overview: We’ve got the core mechanics of this game figured out: The player can tap
the spacebar to jump over incoming obstacles. However, the player appears
to be running for the first few seconds, but then the background just
disappears! In order to fix this, we need to repeat the background seamlessly
to make it look like the world is rushing by! We also need the game to halt
when the player collides with an obstacle, stopping the background from
repeating and stopping the obstacles from spawning. Lastly, we must
destroy any obstacles that get past the player.

Project
Outcome:

The background moves flawlessly at the same time as the obstacles, and the
obstacles will despawn when they exit game boundaries. With the power of
script communication, the background and spawn manager will halt when
the player collides with an obstacle. Colliding with an obstacle will also
trigger a game over message in the console log, halting the background and
the spawn manager.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use tags to label game objects and call them in the code
- Use script communication to access the methods and variables of other

scripts

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/19QNrdy6r6zTMaoBWH-Xr3A86nhII1LS6D0vh7BDALjk/edit#heading=h.oyln5lx6jjgt
https://docs.google.com/document/d/19QNrdy6r6zTMaoBWH-Xr3A86nhII1LS6D0vh7BDALjk/edit#heading=h.hg9gmwb3tihu

10

Step 1: Create a script to repeat background
We need to repeat the background and move it left at the same speed as the obstacles, to make
it look like the world is rushing by. Thankfully we already have a move left script, but we will
need a new script to make it repeat.
1. Create a new script called RepeatBackground.cs

and attach it to the Background Object
- Tip: Think through what needs to be

done: when the background moves
half of its length, move it back that
distance

Step 2: Reset position of background
In order to repeat the background and provide the illusion of a world rushing by, we need to
reset the background object’s position so it fits together perfectly.

1. Declare a new variable private Vector3 startPos;
2. In Start(), set the startPos variable to its actual

starting position by assigning it =
transform.position;

3. In Update(), write an if-statement to reset position
if it moves a certain distance

- Don’t worry: We’re setting it at 40 for
now, just to test basic functionality.
You could probably get it right with trial
and error… but what would happen if
you changed the size?

private Vector3 startPos;

void Start() {
startPos = transform.position; }

void Update() {
if (transform.position.x < startPos.x - 50) {

transform.position = startPos; } }

© Unity 2021 Create with Code - Unit 3

11

Step 3: Fix background repeat with collider
We’ve got the background repeating every few seconds, but the transition looks pretty awkward.
We need make the background loop perfectly and seamlessly with some new variables.

1. Add a Box Collider component to the Background
2. Declare a new private float repeatWidth variable
3. In Start(), get the width of the box collider, divided by 2
4. Incorporate the repeatWidth variable into the repeat

function

- Don’t worry: We’re only adding a
box collider to get the size of the
background

- New Function: .size.x

private Vector3 startPos;
private float repeatWidth;

void Start() {
startPos = transform.position;
repeatWidth = GetComponent<BoxCollider>().size.x / 2; }

void Update() {
if (transform.position.x < startPos.x - 50 repeatWidth) {

transform.position = startPos; } }

Step 4: Add a new game over trigger
When the player collides with an obstacle, we want to trigger a “Game Over” state that stops
everything In order to do so, we need a way to label and discern all game objects that the player
collides with.

1. In the inspector, add a “Ground” tag to the Ground and an
“Obstacle” tag to the Obstacle prefab

2. In PlayerController, declare a new public bool gameOver;
3. In OnCollisionEnter, add the if-else statement to test if

player collided with the “Ground” or an “Obstacle”
4. If they collided with the “Ground”, set isOnGround = true,

and if they collide with an “Obstacle”, set gameOver = true

- New Concept: Tags
- Warning: New tags will NOT be

automatically added after you
create them. Make sure to add
them yourself once they are
created.

- Tip: No need to say gameOver =
false, since it is false by default

public bool gameOver = false;

private void OnCollisionEnter(Collision collision) {
isOnGround = true;
if (collision.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (collision.gameObject.CompareTag("Obstacle")) {

gameOver = true;
Debug.Log("Game Over!"); }

}

© Unity 2021 Create with Code - Unit 3

12

Step 5: Stop MoveLeft on gameOver
We’ve added a gameOver bool that seems to work, but the background and the objects
continue to move when they collide with an obstacle. We need the MoveLeft script to
communicate with the PlayerController, and stop once the player triggers gameOver.

1. In MoveLeft.cs, declare a new private
PlayerController playerControllerScript;

2. In Start(), initialize it by finding the Player and
getting the PlayerController component

3. Wrap the translate method in an if-statement
checking if game is not over

- New Concept: Script Communication
- Warning: Make sure to spell the

“Player” tag correctly

private float speed = 30;
private PlayerController playerControllerScript;

void Start() {
playerControllerScript =
GameObject.Find("Player").GetComponent<PlayerController>(); }

void Update() {
if (playerControllerScript.gameOver == false) {

transform.Translate(Vector3.left * Time.deltaTime * speed); } }

Step 6: Stop obstacle spawning on gameOver
The background and the obstacles stop moving when gameOver == true, but the Spawn
Manager is still raising an army of obstacles! We need to communicate with the Spawn
Manager script and tell it to stop when the game is over.

1. In SpawnManager.cs, get a reference to the playerControllerScript
using the same technique you did in MoveLeft.cs

2. Add a condition to only instantiate objects if gameOver == false

private PlayerController playerControllerScript;

void Start() {
InvokeRepeating("SpawnObstacle", startDelay, repeatRate);
playerControllerScript =
GameObject.Find("Player").GetComponent<PlayerController>(); }

void SpawnObstacle () {
if (playerControllerScript.gameOver == false) {

Instantiate(obstaclePrefab, spawnPos, obstaclePrefab.transform.rotation);
} }

© Unity 2021 Create with Code - Unit 3

13

Step 7: Destroy obstacles that exit bounds
Just like the animals in Unit 2, we need to destroy any obstacles that exit boundaries. Otherwise
they will slide into the distance… forever!

1. In MoveLeft, in Update(); write an if-statement to
Destroy Obstacles if their position is less than a
leftBound variable

2. Add any comments you need to make your code
more readable

- Tip: Reference your code from
MoveLeft

private float leftBound = -15;

void Update() {
if (playerControllerScript.gameOver == false) {

transform.Translate(Vector3.left * Time.deltaTime * speed); }

if (transform.position.x < leftBound && gameObject.CompareTag("Obstacle")) {
Destroy(gameObject); } }

Lesson Recap
New
Functionality

● Background repeats seamlessly
● Background stops when player collides with obstacle
● Obstacle spawning stops when player collides with obstacle
● Obstacles are destroyed off-screen

New Concepts
and Skills

● Repeat background
● Get Collider width
● Script communication
● Equal to (==) operator
● Tags
● CompareTag()

Next Lesson ● Our character, while happy on the inside, looks a little too rigid on the
outside, so we’re going to do some work with animations

© Unity 2021 Create with Code - Unit 3

14

3.3 Don’t Just Stand There

Steps:
Step 1: Explore the player’s animations

Step 2: Make the player start off at a run

Step 3: Set up a jump animation

Step 4: Adjust the jump animation

Step 5: Set up a falling animation

Step 6: Keep player from unconscious jumping

Example of project by end of lesson

Length: 60 minutes

Overview: The game is looking great so far, but the player character is a bit… lifeless.
Instead of the character simply sliding across the ground, we’re going to give
it animations for running, jumping, and even death! We will also tweak the
speed of these animations, timing them so they look perfect in the game
environment.

Project
Outcome:

With the animations from the animator controller, the character will have 3
new animations that occur in 3 different game states. These states include
running, jumping, and death, all of which transition smoothly and are timed to
suit the game.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Manage basic animation states in the Animator Controller
- Adjust the speed of animations to suit the character or the game
- Set a default animation and trigger others with anim.SetTrigger
- Set a permanent state for “Game Over” with anim.SetBool

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.f1f5jal6o0ef
https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.9xw2rvio6erz
https://docs.google.com/document/d/1veRsjg3zuRcYgoiA-QUcCP3hKtg0xY3meU_mdJsmBDc/edit#heading=h.9firn3g29283

15

Step 1: Explore the player’s animations
In order to get this character moving their arms and legs, we need to explore the Animation
Controller.
1. Double-click on the Player’s Animation Controller,

then explore the different Layers, double-clicking
on States to see their animations and Transitions
to see their conditions

- New Concept: Animator Controller
- New Concept: States and Conditions

© Unity 2021 Create with Code - Unit 3

16

Step 2: Make the player start off at a run
Now that we’re more comfortable with the animation controller, we can tweak some variables
and settings to make the player look like they’re really running.
1. In the Parameters tab, change the Speed_f

variable to 1.0
2. Right-click on Run_Static > Set as Layer Default

State
3. Single-click the the Run_Static state and adjust

the Speed value in the inspector to match the
speed of the background

- Tip: Notice how it transitions from idle
to walk to Run - looks awkward - that’s
why need to make run default

© Unity 2021 Create with Code - Unit 3

17

Step 3: Set up a jump animation
The running animation looks good, but very odd when the player leaps over obstacles. Next up,
we need to add a jumping animation that puts a real spring in their step.
1. In PlayerController.cs, declare a new private Animator

playerAnim;
2. In Start(), set playerAnim = GetComponent<Animator>();
3. In the if-statement for when the player jumps, trigger

the jump:
animator.SetTrigger(“Jump_trig”);

- New Function: anim.SetTrigger
- Tip: SetTrigger is helpful when

you just want something to
happen once then return to
previous state (like a jump
animation)

private Animator playerAnim;

void Start() {
playerRb = GetComponent<Rigidbody>();
playerAnim = GetComponent<Animator>();
Physics.gravity *= gravityModifier; }

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround) {

playerRb.AddForce(Vector3.up * 10 jumpForce, ForceMode.Impulse);
isOnGround = false;
playerAnim.SetTrigger("Jump_trig"); } }

Step 4: Adjust the jump animation
The running animation plays, but it’s not perfect yet, we should tweak some of our character’s
physics-related variables to get this looking just right.

1. In the Animator window, click on the Running_Jump state,
then in the inspector and reduce its Speed value to slow
down the animation

2. Adjust the player’s mass, jump force, and gravity modifier
to get your jump just right

© Unity 2021 Create with Code - Unit 3

18

Step 5: Set up a falling animation
The running and jumping animations look great, but there’s one more state that the character
should have an animation for. Instead of continuing to sprint when it collides with an object, the
character should fall over as if it has been knocked out.

1. In the condition that player collides with Obstacle,
set the Death bool to true

2. In the same if-statement, set the DeathType
integer to 1

- New Function: anim.SetBool
- New Function: anim.SetInt

public bool gameOver = false;

private void OnCollisionEnter(Collision collision) {
if (collision.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (collision.gameObject.CompareTag("Obstacle")) {

Debug.Log("Game Over")
gameOver = true;
playerAnim.SetBool("Death_b", true);
playerAnim.SetInteger("DeathType_int", 1);

}
}

Step 6: Keep player from unconscious jumping
Everything is working perfectly, but there’s one small disturbing bug to fix: the player can jump
from an unconscious position, making it look like the character is being defibrillated.

1. To prevent the player from jumping while
unconscious, add && !gameOver to the jump
condition

- New Concept: ! “Does not” and !=
“Does not equal” operators

- Tip: gameOver != true is the same as
gameOver == false

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {

playerRb.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);
isOnGround = false;
animator.SetTrigger("Jump_trig");

}
}

© Unity 2021 Create with Code - Unit 3

19

Lesson Recap
New
Functionality

● The player starts the scene with a fast-paced running animation
● When the player jumps, there is a jumping animation
● When the player crashes, the player falls over

New Concepts
and Skills

● Animation Controllers
● Animation States, Layers, and Transitions
● Animation parameters
● Animation programming
● SetTrigger(), SetBool(), SetInt()
● Not (!) operator

Next Lesson ● We’ll really polish this game up to make it look nice using particles and
sound effects!

© Unity 2021 Create with Code - Unit 3

20

3.4 Particles and Sound Effects

Steps:
Step 1: Customize an explosion particle

Step 2: Play the particle on collision

Step 3: Add a dirt splatter particle

Step 4: Add music to the camera object

Step 5: Declare variables for Audio Clips

Step 6: Play Audio Clips on jump and crash

Example of project by end of lesson

Length: 60 minutes

Overview: This game is looking extremely good, but it’s missing something critical:
Sound effects and Particle effects! Sounds and music will breathe life into an
otherwise silent game world, and particles will make the player’s actions
more dynamic and eye-popping. In this lesson, we will add cool sounds and
particles when the character is running, jumping, and crashing.

Project
Outcome:

Music will play as the player runs through the scene, kicking up dirt particles
in a spray behind their feet. A springy sound will play as they jump and a
boom will play as they crash, bursting in a cloud of smoke particles as they
fall over.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Attach particle effects as children to game objects
- Stop and play particle effects to correspond with character animation

states
- Work with Audio Sources and Listeners to play background music
- Add sound effects to add polish to your project

© Unity 2021 Create with Code - Unit 3

https://docs.google.com/document/d/1IzXfgr0CZzfZcnpJwdUeUOQOTO-ErXTXMfpECBeAOx8/edit#heading=h.h1ix6qvgezeb
https://docs.google.com/document/d/1IzXfgr0CZzfZcnpJwdUeUOQOTO-ErXTXMfpECBeAOx8/edit#heading=h.v4zxsaz3l4ah

21

Step 1: Customize an explosion particle
The first particle effect we should add is an explosion for when the player collides with an
obstacle.
1. From the Course Library > Particles, drag

FX_Explosion_Smoke into the hierarchy, then use
the Play / Restart / Stop buttons to preview it

2. Play around with the settings to get your particle
system the way you want it

3. Make sure to uncheck the Play on Awake setting
4. Drag the particle onto your player to make it a

child object, then position it relative to the player

- New Concept: Particle Effects
- Warning: Don’t go crazy customizing

your particle effects, you could easily
get sidetracked

- New Concept: Child objects with
relative positions

- Tip: Hovering over the settings while
editing your particle provides great
tool tips

Step 2: Play the particle on collision
We discovered the particle effects and found an explosion for the crash, but we need to assign
it to the Player Controller and write some new code in order to play it.

1. In PlayerController.cs, declare a new public ParticleSystem
explosionParticle;

2. In the Inspector, assign the explosion to the explosion particle variable
3. In the if-statement where the player collides with an obstacle, call

explosionParticle.Play();, then test and tweak the particle properties

- New Function:
particle.Play()

public ParticleSystem explosionParticle;

private void OnCollisionEnter(Collision collision other) {
if (other.gameObject.CompareTag("Ground")) {

isOnGround = true;
} else if (other.gameObject.CompareTag("Obstacle")) {

... explosionParticle.Play(); } }

© Unity 2021 Create with Code - Unit 3

22

Step 3: Add a dirt splatter particle
The next particle effect we need is a dirt splatter, to make it seem like the player is kicking up
ground as they sprint through the scene. The trick is that the particle should only play when the
player is on the ground.

1. Drag FX_DirtSplatter as the Player’s child object, reposition
it, rotate it, and edit its settings

2. Declare a new public ParticleSystem dirtParticle;, then
assign it in the Inspector

3. Add dirtParticle.Stop(); when the player jumps or collides
with an obstacle

4. Add dirtParticle.Play(); when the player lands on the ground

- New Function:
particle.Stop()

public ParticleSystem dirtParticle

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {
... dirtParticle.Stop(); } }

private void OnCollisionEnter(Collision collision other) {
if (other.gameObject.CompareTag("Ground")) { ... dirtParticle.Play();
} else if (other.gameObject.CompareTag("Obstacle")) { ... dirtParticle.Stop(); } }

Step 4: Add music to the camera object
Our particle effects are looking good, so it’s time to move on to sounds! In order to add music,
we need to attach sound component to the camera. After all, the camera is the eyes AND the
ears of the scene.

1. Select the Main Camera object, then Add
Component > Audio Source

2. From Course Library > Sound, drag a music clip
onto the AudioClip variable in the inspector

3. Reduce the volume so it will be easier to hear
sound effects

4. Check the Loop checkbox

- New Concept: Audio Listener and
Audio Sources

- Tip: Music shouldn’t appear to come
from a particular location in 3D space,
which is why we’re adding it directly to
the camera

© Unity 2021 Create with Code - Unit 3

23

Step 5: Declare variables for Audio Clips
Now that we’ve got some nice music playing, it’s time to add some sound effects. This time
audio clips will emanate from the player, rather than the camera itself.

1. In PlayerController.cs, declare a new public
AudioClip jumpSound; and a new public AudioClip
crashSound;

2. From Course Library > Sound, drag a clip onto each
new sound variable in the inspector

- Tip: Adding sound effects is not as
simple as adding music, because we
need to trigger the events in our code

© Unity 2021 Create with Code - Unit 3

24

Step 6: Play Audio Clips on jump and crash
We’ve assigned audio clips to the jump and the crash in PlayerController. Now we need to play
them at the right time, giving our game a full audio experience

1. Add an Audio Source component to the player
2. Declare a new private AudioSource playerAudio;

and initialize it as playerAudio =
GetComponent<AudioSource>();

3. Call playerAudio.PlayOneShot(jumpSound, 1.0f);
when the character jumps

4. Call playerAudio.PlayOneShot(crashSound, 1.0f);
when the character crashes

- Don’t worry: Declaring a new
AudioSource variable is just like
declaring a new Animator or RigidBody

private AudioSource playerAudio;

void Start() {
... playerAudio = GetComponent<AudioSource>(); }

void Update() {
if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver) {

... playerAudio.PlayOneShot(jumpSound, 1.0f); } }

private void OnCollisionEnter(Collision collision other) {
...
} else if (other.gameObject.CompareTag("Obstacle"))
{ ... playerAudio.PlayOneShot(crashSound, 1.0f); } }

Lesson Recap
New
Functionality

● Music plays during the game
● Particle effects at the player’s feet when they run
● Sound effects and explosion when the player hits an obstacle

New Concepts
and Skills

● Particle systems
● Child object positioning
● Audio clips and Audio sources
● Play and stop sound effects

© Unity 2021 Create with Code - Unit 3

25

Challenge 3
Balloons & Booleans

Challenge
Overview:

Apply your knowledge of physics, scrolling backgrounds, and special effects
to a balloon floating through town, picking up tokens while avoiding
explosives. You will have to do a lot of troubleshooting in this project because
it is riddled with errors.

Challenge
Outcome:

- The balloon floats upwards as the player holds spacebar
- The background seamlessly repeats, simulating the balloon’s movement
- Bombs and Money tokens are spawned randomly on a timer
- When you collide with the Money, there’s a particle and sound effect
- When you collide with the Bomb, there’s an explosion and the background

stops

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Declaring and initializing variables with the GetComponent method
- Using booleans to trigger game states
- Displaying particle effects at a particular location relative to a gameobject
- Seamlessly scrolling a repeating background

Challenge
Instructions:

- Open your Prototype 3 project
- Download the "Challenge 3 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 3 > Instructions folder, use the

"Challenge 3 - Instructions" and Outcome video as a guide to complete the
challenge

© Unity 2021 Create with Code - Unit 3

26

Challenge Task Hint

1 The player can’t
control the balloon

The balloon should float up
as the player presses
spacebar

There is a “NullReferenceExcepton”
error on the player’s rigidBody
variable - it has to be assigned in
Start() using the GetComponent<>
method

2 The background only
moves when the game
is over

The background should move
at start, then stop when the
game is over

In MoveLeftX.cs, the objects should
only Translate to the left if the game
is NOT over

3 No objects are being
spawned

Make bombs or money
objects spawn every few
seconds

There is an error message saying,
“Trying to Invoke method:
SpawnManagerX.PrawnsObject
couldn't be called” - spelling matters

4 Fireworks appear to
the side of the balloon

Make the fireworks display at
the balloon’s position

The fireworks particle is a child
object of the Player - but its location
still has to be set at the same
location

5 The background is not
repeating properly

Make the background repeat
seamlessly

The repeatWidth variable should be
half of the background’s width, not
half of its height

Bonus Challenge Task Hint

X The balloon can float
way too high

Prevent the player from
floating their balloon too high

Add a boolean to check if the balloon
isLowEnough, then only allow the
player to add upwards force if that
boolean is true

Y The balloon can drop
below the ground

Make the balloon appear to
bounce off of the ground,
preventing it from leaving the
bottom of the screen. There
should be a sound effect
when this happens, too!

Figure out a way to test if the balloon
collides with the ground object, then
add an impulse force upward if it
does

© Unity 2021 Create with Code - Unit 3

27

Challenge Solution

1 In PlayerControllerX.cs, in Start(), assign playerRb just like the playerAudio variable:

playerAudio = GetComponent<AudioSource>();

playerRb = GetComponent<Rigidbody>();

2 In MoveLeftX.cs, the objects should only Translate to the left if the game is NOT over - it’s
currently checking if the game IS over:

if (! playerControllerScript.gameOver) {

transform.Translate(Vector3.left * speed * Time.deltaTime, Space.World);

}

3 In SpawnManagerX.cs, in Start(), the InvokeRepeating method is using an incorrect spelling of
“SpawnObjects” - correct the spelling error

void Start() {

InvokeRepeating("PrawnsObjectSpawnObjects", spawnDelay, spawnInterval);

...

}

4 Select the Fireworks child object and reposition it to the same location as the Player

5 In RepeatBackgroundX.cs, in Start(), the repeatWidth should be dividing the X size (width) of
the box collider by 2, not the Y size (height)

repeatWidth = GetComponent<BoxCollider>().size.y x / 2;

© Unity 2021 Create with Code - Unit 3

28

Bonus Challenge Solution

X1 In PlayerControllerX.cs create a boolean to track whether the player is low enough to float
upwards, then in Update(), set it to false if the player is above a certain Y value and, else, set it
to true

public bool isLowEnough;

void Update() {

if (transform.position.y > 13) {

isLowEnough = false;

} else {

isLowEnough = true;

}

}

X2 In the if-statement testing for the player pressing spacebar, add a condition testing that the
isLowEnough boolean is true:

if (Input.GetKey(KeyCode.Space) && isLowEnough && !gameOver) {
playerRb.AddForce(Vector3.up * floatForce

}

Y1 Add a tag to the Ground object so that you can easily test for a collision with it

Y2 In PlayerControllerX.cs, in the OnCollisionEnter method, add a third else-if checking if the
balloon collided with the ground during the game, and if so, to add an impulse force upwards

private void OnCollisionEnter(Collision other) {

...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)

{

playerRb.AddForce(Vector3.up * 10, ForceMode.Impulse);

}

© Unity 2021 Create with Code - Unit 3

29

Y3 To add a sound effect, declare a new AudioClip variable and assign it in the inspector, then use
the PlayOneShot method when the player collides with the ground.

public AudioClip moneySound;

public AudioClip explodeSound;

public AudioClip bounceSound;

private void OnCollisionEnter(Collision other) {

...

} else if (other.gameObject.CompareTag("Ground") && !gameOver)

{

rigidBody.AddForce(Vector3.up * 10, ForceMode.Impulse);

playerAudio.PlayOneShot(bounceSound, 1.5f);

}

© Unity 2021 Create with Code - Unit 3

30

Unit 3 Lab
Player Control

Steps:
Step 1: Create PlayerController and plan your code

Step 2: Basic movement from user input

Step 3: Constrain the Player’s movement

Step 4: Code Cleanup and Export Backup

Example of progress by end of lab

Length: 60 minutes

Overview: In this lesson, you program the player’s basic movement, including the code
that limits that movement. Since there are a lot of different ways a player can
move, depending on the type of project you’re working on, you will not be
given step-by-step instructions on how to do it. In order to do this, you will
need to do research, reference other code, and problem-solve when things go
wrong.

Project
Outcome:

The player will be able to move around based on user input, but not be able to
move where they shouldn’t.

Learning
Objectives:

By the end of this lab, you will be able to:
- Program the type of player movement you want based on user input
- Restrict player movement in the manner that is appropriate, depending on

the needs of the project
- Troubleshoot issues and find workarounds related to player movement

© Unity 2021 Create with Code - Unit 3

31

Step 1: Create PlayerController and plan your code
Regardless of what type of movement your player has, it’ll definitely need a PlayerController
script
1. Select your Player and add a

Rigidbody component (with or without
gravity enabled)

2. In your Assets folder, create a new
“Scripts” folder

3. Inside the new “Scripts” folder, create
a new “PlayerController” C# script

4. Attach it to the player, then open it
5. Determine what type of programming

will be required for your Player

- Tip: Rigidbody is usually helpful - also detect
triggers

- Tip: Think about all the movement we’ve done so
far:
- Prototype 1 - forward/back and rotate based

on up/down and left/right arrows
- Challenge 1 - plane moving constantly, rotated

direction based on arrows
- Prototype 2 - side-to-side movement and

spacebar to fire a projectile
- Challenge 2 - No player movement, but

projectile launch on spacebar
- Prototype 3 - background move, and player

jumps on spacebar press
- Challenge 3 - background move and player

floats up when spacebar down
- Don’t worry: If you want your player to move like

the ball in Prototype 4, just use basic alternative for
now

References to the various types of movement programmed up to this point in the course

By the end of this step, you should have a new Script open and a solid plan for what will go in it.

© Unity 2021 Create with Code - Unit 3

32

Step 2: Basic movement from user input
The first thing we’ll program is the player’s very basic movement based on user input
1. Declare a new private float speed variable
2. If using physics, declare a new Rigidbody

playerRb variable for it and initialize it in Start()
3. If using arrow keys, declare new verticalInput

and/or horizontalInput variables
4. If basing your movement off a key press,

create the if-statement to test for the KeyCode
5. Use either the Translate method or AddForce

method (if using physics) to move your
character

- Explanation: Rigidbody movement with
AddForce is different than Translate -
looks more similar to real world movement
with force being applied

- Don’t worry: If your player is colliding with
the ground or other objects in weird ways -
we’ll fix that soon

- Tip: You can look through your old code
for references to how you did things

By the end of this step, the player should be able to move the way that you want based on user
input.

© Unity 2021 Create with Code - Unit 3

33

Step 3: Constrain the Player’s movement
No matter what kind of movement your player has, it needs to be limited for gameplay

1. If your player is colliding with objects they shouldn’t
(including the ground), check the “Is trigger” box in the
Collider component

2. If your player’s position or rotation should be
constrained, expand the constraints in the Rigidbody
component and constrain certain axes

3. If your Player can go off the screen, write an
if-statement checking and resetting the position

4. If the Player can double-jump or fly off-screen, create a
boolean variable that limits the user’s ability to do so

5. If your player should be constrained by physical
barriers along the outside of the play area, create more
primitive Planes or Cubes and scale them to form
walls

- Tip: Check the Global/Local
checkbox above scene view to see
the rotation of the player

- Tip: Look back at Prototype 2 for
the if-then statement to keep the
player on screen

- Tip: Look back at Prototype 3 and
Challenge 3 for examples of
booleans to prevent
double-jumping or going too high

By the end of this step, the player’s movement should be constrained in such a way that makes your
game playable.

© Unity 2021 Create with Code - Unit 3

34

Step 4: Code Cleanup and Export Backup
Now that we have the basic functionality working, let’s clean up our code and make a backup.

1. Create new Empty game objects and nest objects
inside them to organize your hierarchy

2. Clean up your Update methods by moving the
blocks of code into new void functions (e.g.
“MovePlayer()” or “ConstrainPlayerPosition()”)

3. Add comments to make your code more readable
4. Test to make sure everything still works, then save

your scene
5. Right-click on your Assets folder > Export Package

then save a new version in your Backups folder

- Tip: You always want to keep your
Update() functions clean or they can
become overwhelming - it should be
easy to see what actions are
happening every frame

// Move the player left/right and up/down based on arrow keys

void MovePlayer() {

...

}

// Prevent the player from leaving the screen top/bottom

void ConstrainPlayerPosition() {

...

}

By the end of this step, your code should be commented, organized, and backed up.

Lesson Recap
New Progress ● Player can move based on user input

● Player movement is constrained to suit the requirements of the game

New Concepts
and Skills

● Program in C# independently
● Troubleshoot issues independently

© Unity 2021 Create with Code - Unit 3

35

Quiz Unit 3
QUESTION CHOICES

1 You are trying to STOP spawning enemies when the
player has died and have created the two scripts below
to do that. However, there is an error on the underlined
code, “isAlive” in the EnemySpawner script. What is
causing that error?

a. The “p” should be capitalized in
“playerController.isAlive”

b. The “bool” in the
PlayerController class needs a
“public” access modifier

c. The if-statement cannot be in
the Update method

d. “isAlive” must start with a
capital “I” (“IsAlive”)

public class PlayerController : MonoBehaviour {

bool isAlive;

...

}

public class EnemySpawner : MonoBehaviour {

void Start() {

playerController = GameObject.Find("Player").GetComponent<PlayerController>();

}

void Update() {

if (playerController.isAlive == false) {

StopSpawning();

}

}

}

2 Match the following animation methods with its set of
parameters

a. 1A, 2B, 3C
b. 1A, 2C, 3B
c. 1B, 2A, 3C
d. 1C, 2A, 3B1. anim.SetBool(______); A. “Celebrate”

2. anim.SetTrigger(_____); B. “Alive”, true

3. anim.SetInt(_____); C. “ThrowType”, 2

© Unity 2021 Create with Code - Unit 3

36

3 Given the animation controller / state machine below,
which code will make the character transition from the
“Idle” state to the “Walk” state?

a. setFloat(“Speed_f”, 0.3f);
b. setInt(“Speed_f”, 1);
c. setTrigger(“Speed_f”);
d. setFloat(“Speed_f”, 0.1f);

4 Which of these is the correct way to get a reference to
an AudioSource component on a GameObject?

a. Line A
b. Line B
c. Line C
d. Line DA. audio = GetComponent<AudioSource>();

B. audio = GetComponent(AudioSource)<>;

C. audio = AudioSource.GetComponent<>();

D. audio = GetComponent.Audio<Source>;

5 When you run a project with the code below, you get the
following error: “NullReferenceException: Object
reference not set to an instance of an object.” What is
most likely the problem?

a. The Player object does not
have a collider

b. The Enemy object does not
have a Rigidbody component

c. The “Start” method should
actually be “Update”

d. There is no object named
“Player” in the scene

public class Enemy : MonoBehaviour {

void Start() {

player = GameObject.Find("Player");

}

void OnTriggerEnter(Collider other) {

if (player.transform.position.z > 10) {

Destroy(other.gameObject);

}

}

}

© Unity 2021 Create with Code - Unit 3

37

6 Which of the following conditions properly tests that the
game is NOT over and the player IS on the ground

a. Line A
b. Line B
c. Line C
d. Line DA. if (gameOver == false AND isOnGround)

B. if (gameOver && isOnGround == true)

C. if (gameOver != true && isOnGround)

D. if (gameOver != false && isOnGround == true)

7 By default, what will be the first state used by this
Animation Controller?

a. “Any State”
b. “NotCrouched”
c. “Death”
d. “Crouch_Up”

8 Which of the following variable declarations observes
Unity’s standard naming conventions (especially as it
relates to capitalization)?

a. 2 and 4
b. 3 and 6
c. 4 and 5
d. 1 and 5

1. private Animator anim;

2. private player Player;

3. Float JumpForce = 10.0f;

4. bool gameOver = True;

5. private Vector3 startPos;

6. Public gameObject ObstaclePrefab;

© Unity 2021 Create with Code - Unit 3

38

9 Which of the following is most likely the condition for the
transition between “Run” and “Walk” shown below?

a. Jump_b is true
b. Speed_f is Less than 0.5
c. Speed_f is Greater than 0.5
d. Animation_int is Less than 10

A.

B.

C.

D.

10 Which of the following do you think makes the most
sense for a simple movement state machine?

a. Image A
b. Image B
c. Image C

A.

B.

C.

© Unity 2021 Create with Code - Unit 3

39

Quiz Answer Key
ANSWER EXPLANATION

1 B In order to access a variable from another class, that variable needs to be
“public”. By default, if there is no access modifier, variables are private and
cannot be accessed by another class

2 C SetInt would require an integer parameter, SetBool would require a boolean
parameter, and SetTrigger only requires the trigger name/id

3 A You can see in the inspector that the condition for this transition is that
“Speed_f is greater than 0.25”. You can tell it’s a float because it uses
decimal points and it must be higher than 0.25.

4 A “GetComponent<AudioSource>();” is the correct way to use the
GetComponent method

5 D If you try to “Find” an object that is not in the scene, you will get a
“NullReferenceException” error.

6 C != means “does not equal to”, so “gameOver != true” is testing that the game
is not over. If you just use the boolean’s name like “isOnGround,” this tests
whether that boolean is true. The syntax for testing two conditions is “&&”.

7 B The default starting state is the one that the “Entry” state connects to.

8 D 1. private Animator anim; - this is correct
2. private player Player; - should be “private Player player”
3. Float JumpForce = 10.0f; - should be “float jumpForce = 10.0f”
4. bool gameOver = True; - should be “true” (lowercase “t”)
5. private Vector3 startPos; - this is correct
6. Public gameObject ObstaclePrefab; - should be “public GameObject

obstaclePrefab”

9 B If you are transitioning from Running to Walking, that most likely is a result of
reducing speed, so checking if “Speed_f is less than 0.5” is most likely

10 A You should start with “Idle” as the default state, then be able to transition
between any of the states (Idling, Walking, Running). There should definitely
be a transition between Walk and Run.

© Unity 2021 Create with Code - Unit 3

40

Bonus Features 3 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 3

41

Step 1: Overview
This tutorial outlines four potential bonus features for the Run and Jump Prototype at varying levels
of difficulty:

● Easy: Randomize obstacles
● Medium: Double jump
● Hard: Dash ability and score
● Expert: Game start animation

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 3

42

Step 2: Easy: Randomize obstacles
Randomly select from a variety of obstacles to spawn.
You could even have piles of obstacles instead of single ones, forcing the player to pay closer
attention.

Step 3: Medium: Double jump
Program a double-jump, so the player can jump one additional time once already in the air. Along
with this, you could create a new extra tall obstacle that requires a double-jump (maybe two
obstacles stacked on top of each other).
This adds a completely new gameplay mechanic. And who doesn’t love a double-jump?

© Unity 2021 Create with Code - Unit 3

43

Step 5: Hard: Dash ability and score
Add a “dash” / “super speed” ability where, if the player is holding a certain key, the player runs
faster through the world, matched by a faster running animation. Use Debug.Log to track the
player’s increasing score from 0, which should increase twice as fast during “dash” mode, and
then stop counting when the game is over, reflecting the player’s score.
This adds a completely new strategic element to the game, where players might implement
different tactics to maximize their score.

Step 6: Expert: Game start animation
Rather than your player starting off running in place with the background moving, have the player
walk into frame from the left, then begin running in place alongside the moving background.
This gives the player a moment to collect themselves rather than being thrown straight into
gameplay.

© Unity 2021 Create with Code - Unit 3

44

Step 7: Hints and solution walkthrough
Hints:

● Easy: Randomize obstacles
○ Convert the prefab holder inside the SpawnManager to an array.

● Medium: Double jump
○ Try using a boolean to limit the player to double-jumping once

● Hard: Dash ability and score
○ Try using a boolean to determine whether the player is running fast

● Expert: Game start animation
○ Try lerping the players position.

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 3

https://connect-prd-cdn.unity.com/20210505/00ca7bdf-a2e1-4095-a29d-d084e759c206/Unit%203%20-%20Bonus%20Features%20Solutions.pdf?_ga=2.267198670.1186801097.1620052249-59568313.1601905412

